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1  INTRODUCTION 
 
The classification methods for feature spectra are based on a comparison of the 

spectral image with a reference spectrum (endmembers or spectral libraries). The 
comparison is accomplished through a criterion of similarity. The Spectral Angle Mapper - 
SAM is one of the leading classification methods because it evaluates the spectra similarity 
in order to repress the influence of the shading to accentuate the target reflectance 
characteristics (Kruse et al., 1992; Kruse et al., 1993). A lot of studies use SAM for the 
spectral analysis (Yuhas et al., 1992 e; Conel et al., 1992; Richardson & Kruse, 1999; 
McCubbin et al., 1998; Riaza, et al., 1998; Bogliolo et al., 1998).  

In this paper, the SAM formulation is discussed and a new method is proposed for 
its improvement. 

2 MATHEMATICAL FORMULATION OF SAM 
 

The mathematical formulation of SAM attempts to obtain the angles formed 
between the reference spectrum and the image spectrum treating them as vectors in a space 
with dimensionality equal to the number of bands (Kruse et al., 1993; Boardman, 1992).  
SAM presents the following formulation: 

 

Equation 1 

 

 

α = Angle formed between reference spectrum and  image spectrum 

X = Image spectrum 

Y = Reference spectrum 
 
The SAM value is expressed in radians where minor angle α, represents the major 

similarity among the curves. The angle α, determined by cos-1, presents a variation 
anywhere between 0o and 90o.The equation above can also be expressed as cos α (equation 
2). In these conditions, the best estimate acquires values close to 1.  

 

Equation 2 
cos α= _____Σ XY____ 

            Σ(X)2 Σ(Y)2 
 

α=cos-1_____Σ XY____ 
             Σ(X)2 Σ(Y)2 

 



3 SAM AS A VARIANT OF THE PEARSONIAN CORRELATION COEFFICIENT  
 
The function cos (SAM) is similar to the Pearsonian Correlation Coefficient 

(equation 3).  The big difference is that Pearsonian Correlation Coefficient standardizes the 
data, centralizing itself in the mean of x and y. 

 
 

 
Equation 3 

 
 
As will be demonstrated, the standardization by average is more beneficial and 

gathers even better estimates. 
  

4  SAM VERSUS PEARSON’S CORRELATION  
 
A big limitation of SAM is the impossibility of distinguishing between negative 

and positive correlations because only the absolute value is considered.  
Table 1 exemplifies this SAM limitation when it compares the targets of the 

hypothetical curves in relation to a reference spectrum.  On the one hand, the reference 
spectrum shows the opposite behavior of the targets analyzed.  The cos (SAM) values 
demonstrate high correlation, indicating – erroneously -- the presence of the material.  On 
the other hand, Pearson’s correlation presents an excellent estimate for an analysis of high 
correlation being different from what is desired.  

Besides SAM’s assumption that the positive and the negative correlations have an 
equal value, also it presents limitations for other types of curves.  Table 2 shows three 
curves of hypothetical targets that are quite differentiated from the reference curve. Target 
“A” possesses two points of minimal values at bands 2 and 4.  Target “B” is practically one 
line with a small increase at the band 4.  Target “C” diverges from the reference curve 
presenting greatest values at the bands 2 and 4.  In spite of the apparent differences among 
the curves, the cos (SAM)  shows a high correlation value (close to 1) that doesn’t reflect 
the truth.  Once again, the use of the Pearson Correlation is more accurate in estimating the 
analyzed curves. 

Finally, the comparison of the methods is accomplished, in their principal 
objective - the elimination of the shading effect. Table 3 presents a reference curve in 
relation to three targets increasing the presence of the shading effect.  It is observed that 
Pearson’s correlation is quite indifferent to the shading factor, indicating a perfect 
correlation among data. However, this is not verified with SAM because there is an internal 
variation in the SAM data for different degrees of shading, evidence of its limitations in this 
area. It was demonstrated that normalization through averaging is the primary factor for 
gathering major results, instead of adopting displacement at zero point. 
 
 
 
 
 

R = _   _Σ (X – X) (Y – Y)___ 

        Σ(X - X)2 Σ (Y - Y)2 



 
Table 1. Comparison between SAM Estimate and Pearsonian Correlation Coefficient 
Band Ref. Target 

A 
Target 

B 
Target 

C 

1 0,7 0,5 1 0,005 

2 0,6 0,6 1,2 0,006 

3 0,5 0,7 1,4 0,007 

4 0,6 0,6 1,2 0,006 

5 0,7 0,5 1 0,005 

Total 3,1 2,9 5,8 0,029 

Mean 0,62 0,58 1,16 0,0058 
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 Value of the cos (SAM) Pearson Correlation 

Reference x Target A 0.969299 -1 

Reference x Target B 0.969299 -1 

Reference x Target C 0.969299 -1 

 
Table 2. Comparison between SAM Estimate and Pearsonian Correlation Coefficient 
Band Ref. Target 

A 
Target 

B 
Target 

C 

1 0,9 1,9 2,7 3,5 

2 0,7 2,5 2,7 2,9 

3 0,5 1,9 2,7 3,5 

4 0,7 2,5 2,7 2,9 

5 0,9 1,9 2,8 3,5 

Total 3,7 10,7 13,6 16,3 

Mean 0,74 2,14 2,72 3,26 
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 Value of cos (SAM) Pearson Correlation  

Reference x Target A 0,965150 -0,218220 

Reference x Target B 0,981606 0,534522 

Reference x Target C 0,980079 0,218218 
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Table 3. Comparison between SAM Estimate and Pearsonian Correlation Coefficient 
Band Ref. Target 

A 
Target 

B 
Target 

C 

1 15 15 15 15 

2 10 12 13 14 

3 5 9 11 13 

4 10 12 13 14 

5 15 15 15 15 

Total 55 63 67 71 

Mean 11 12.6 13.4 14.2 
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 Value of cos (SAM) Pearson Correlation  

Reference x Target A 0.988538  1 

Reference x Target B 0.976624 1 

Reference x Target C 0.962365 1 

 
The derivation of SAM errors is due to the utilization of integral values of x and y 

instead of employing the deviations of pairs (x –x mean) and (y – y mean).  Through an 
analysis of Table 4, it is possible to understand that the pairs of deviations (x –x mean) and 
(y – y mean) present opposite signs at negative correlation and equal signs at positive 
correlation. 

A visualization of this concept represented in a graph.  Figure 1 graphs the mean 
deviations in the relationship between X and Y. The disposition of points through quadrants 
2 and 3 indicates the presence of one positive correlation (Fig. 2a). However, the 
disposition of points in quadrants 1 and 4 indicates one negative correlation (Fig. 2b). 

Through the intermission of the deviation signs it is possible to detect the presence 
of positive or negative correlations. Thus, the employment of pair deviation inside of the 
SAM model provides a better estimate of the similarity degrees between X and Y. 

 

Table 4. Analysis of Pairs of Deviations Relative to the Mean During an Event of 
Positive and Negative Correlation 

Positive Correlation Negative Correlation 

x y x-xm y-ym (x-xm)(y-ym) x y x-xm y-ym (x-xm)(y-ym) 
1 2 -2 -4 8 1 12 -2 4 -8 
2 4 -1 -2 2 2 10 -1 2 -2 
3 6 0 0 0 3 6 0 0 0 
4 8 1 2 2 4 4 1 -2 -2 
5 10 2 4 8 5 2 2 -4 -8 

Reference  

Target A 

Target B 

Target C 



 

 
 
 
 

 
 
 
 

 
Due to the SAM limitations described above, when compared with other methods 

it has demonstrated poor performances. Thus, Crósta et al. (1996, 1998) have had better 
results on the detection of targets using Tricorder instead of SAM in the area of Bodie, 
California. Also, Dickerhof et al. (1998) working with SAM obtained worse results when 
compared to Spectral Mixture Analysis (SMA) used for mineralogical identification and 
lithological mapping at Naxos Island, in Greece. 

5 THE SPECTRAL METHOD SPECTRAL CORRELATION MAPPER (SCM) 
PROPOSITION 

The Spectral Correlation Mapper (SCM) method is a derivative of Pearsonian 
Correlation Coefficient that eliminates negative correlation and maintains the SAM 
characteristic of minimizing the shading effect resulting in better results. The SCM varies 
from –1 to 1 and cos (SAM) varies from 0 to 1. 

Figure 1 – Graphic area in relation to the deviations beginning at x mean and y mean. 

Figure 2 – Exemplification of correlation: a) positive – with the major part of  points 
presenting signals similar  in relation at x  mean and y mean;  b) negative – with the 

major part of  points with  apposite signals  in relation at x mean and y mean. 



The SCM algorithm method, similar to SAM, uses the reference spectrum defined 
by the investigator, in accordance with the image s/he wants to classify. The algorithm was 
developed from IDL language and implemented as an application of the ENVI program.  

6 THE SCM TEST FOR A REGION OF THE NIQUELÂNDIA MINE, BRAZIL 

The SCM program was tested in the Niquelândia mine, for kaolinite features. With 
the objective of forming comparisons, the cos (SAM) calculation was performed, which 
presents the same value graduation as SCM. Both present as higher values the points of 
higher correlation.  

For kaolinite analysis, the spectrum interval is from 2.10730µm to 2. 27620µm 
which corresponds as bands 184 to 201 from the AVIRIS sensor. Such methods present 
better results when the calculation is accomplished inside the limits of the features at 
diagnostic absorption on mineral analysis. Figure 3 shows the images relatives to the 
treatment of cos (SAM) and SCM. Each image is accompanied by its respective entrance 
histograms and its output. 

Note that the SCM image presents a more accentuated contrast for the area with 
kaolinite (white regions) than is observed in the cos (SAM) image. The SCM histogram 
demonstrates that the major part of the pixels present negative correlation. Thus, the rich 
kaolinite areas are distinguished because they are of high intensity. 

However, the cos (SAM) does not obtain the same results due to the fact that it 
equally takes into account the positive and negative feature correlations. So, the cos (SAM) 
presents a very restricted variation from 0,9902 to 1 while SCM presents a wide variation 
of data from –85 to 1. The SCM can also be expressed in angles. Thus, negative correlation 
values must be transformed to zero applying the arcos (SCM) function (Fig. 4). 

To generate an image that emphasizes those dubious points, a subtraction 
operation was done between the cos (SAM) image and SCM In order to do so, a 
normalization of the images was done to make them compatible.  This normalization was 
done through mean subtraction divided by standard deviation. As a result, we have an 
image where higher pixel values represent the places of the erroneous determination of the 
SAM method (Fig. 5).  The visualization of profiles throughout the image-subtraction 
allows the emphasizing, by relative intensity, of the places where a divergent behavior 
between the two methods exists.  Figure 5 presents the image profile through the image-
subtraction for one horizontal transect. On the analogous image form, the positive 
predominant pixels represent the pixels where the methods are divergent.  

The more prominent point of this profile is demonstrated by the spectral curve in 
comparison with the kaolinite (Fig. 6). Observe that a significant similarity exists between 
the kaolinite absorption bands and the emission of the pixel spectrum bands.  

7 CONCLUSION 

The SCM method implemented in SAM method allows for the detection of figures 
with negative correlation and presents better results for elimination of shading effect.  The 
principal change of the proposal is on the utilization of pair deviations, which is different 
from the original SAM formulation.  
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Figure 3 – Images relative to mineral identification of kaolinite according  
to the cos (SAM) and SCM. 

Figure 4 – arcos (SCM+). 
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Figure 5 – Horizontal profile of image subtraction enhance difference  
between cos (SAM) and SCM. 

Figure 6 – Comparison of spectral behavior of the anomalous pixel of the profile in 
relation to the kaolinite used as reference a) pixel curve, b) kaolinite curve, and c) 

superposition of two curves. 
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